Skip to Content
Robotic hand using a laptop computer

What Is 

Machine Learning?

Machine learning is a subset of artificial intelligence (AI). It is focused on teaching computers to learn from data and to improve with experience – instead of being explicitly programmed to do so. In machine learning, algorithms are trained to find patterns and correlations in large data sets and to make the best decisions and predictions based on that analysis. Machine learning applications improve with use and become more accurate the more data they have access to. Applications of machine learning are all around us –in our homes, our shopping carts, our entertainment media, and our healthcare.

Machine learning – and its components of deep learning and neural networks – all fit as concentric subsets of AI. AI processes data to make decisions and predictions. Machine learning algorithms allow AI to not only process that data, but to use it to learn and get smarter, without needing any additional programming. Artificial intelligence is the parent of all the machine learning subsets beneath it. Within the first subset is machine learning; within that is deep learning, and then neural networks within that.

Machine learning is comprised of different types of machine learning models, using various algorithmic techniques. Depending upon the nature of the data and the desired outcome, one of four learning models can be used: supervised, unsupervised, semi-supervised, or reinforcement. Within each of those models, one or more algorithmic techniques may be applied – relative to the datasets in use and the intended results. Machine learning algorithms are basically designed to classify things, find patterns, predict outcomes, and make informed decisions. Algorithms can be used one at a time or combined to achieve the best possible accuracy when complex and more unpredictable data is involved. 

Machine learning algorithms recognise patterns and correlations, which means they are very good at analysing their own ROI. For companies that invest in machine learning technologies, this feature allows for an almost immediate assessment of operational impact. Below is just a small sample of some of the growing areas of enterprise machine learning applications.

See SAP intelligent technologies including AI and machine learning in action 

In his book Spurious Correlations, data scientist and Harvard graduate Tyler Vigan points out that “Not all correlations are indicative of an underlying causal connection.” To illustrate this, he includes a chart showing an apparently strong correlation between margarine consumption and the divorce rate in the state of Maine. Of course, this chart is intended to make a humorous point. However, on a more serious note, machine learning applications are vulnerable to both human and algorithmic bias and error. And due to their propensity to learn and adapt, errors and spurious correlations can quickly propagate and pollute outcomes across the neural network.


An additional challenge comes from machine learning models, where the algorithm and its output are so complex that they cannot be explained or understood by humans. This is called a “black box” model and it puts companies at risk when they find themselves unable to determine how and why an algorithm arrived at a particular conclusion or decision.


Fortunately, as the complexity of data sets and machine learning algorithms increases, so do the tools and resources available to manage risk. The best companies are working to eliminate error and bias by establishing robust and up-to-date AI governance guidelines and best practice protocols.

Machine learning FAQs

Back to top